Birzeit University

Master in Computing Program

Faculty of Engineering and Technology

ENCS539: NLP Information Retrieval and Web Search, Quiz2, October 26, 2021

Student Name:	Student Number:	
Question 1: Consider the following small pa	art of a positional index with th	e format:
word: doc#: <position, 2:="" <6="" good:="" position="">; 3: <2,12> Means: word "Good" occurs in do locations 2 and 12 and in docum</position,>	>; 4 : <9,17> pocument 2 at position	6, in document 3 at
	3: <2,15>; 4: <9>. 3: <4,11>; 4: <3>; 3: <13>; 5:	-

The /d operator, with the format: word1 /d word2 finds occurrences of word1 at a distance at most d>=1 words on either side of word2. Thus, d=1 demands that word1 is adjacent to word2.

- a. Give the set of documents that satisfy the query: **Black /2 Fish**. {D1,D3}
 - b. For which values of **d** the query: **Black /d Sheep** returns the set of documents {D3} as the answer.

 $d=\{2,3,4,5\}$ [greater than or equal 2 but less than 6. At d=6 document 4 comes in and the set is no more $\{D1,D3\}$.

Question2: Find the Levinshtein distance between words "F1F2L3F3F4" and "L1L2L3L4" using the table below (or equivalent). Please mark all needed squares. L_i is the ith letter of your last name, F_j is the jth letter of your first name. Example: name is "adnan yahya" \rightarrow F1='a' F2='d' L3='h' F3='n' F4='a' so word='adhna' and L1='y' L2= 'a' L3= 'h' L4='y' and word2='yahy'

	-	F1=	F2=	L3=	F3=	F4=
_						
L1=						
L2=						
L3=						
L4=						

Test your case at the following link: http://www.let.rug.nl/~kleiweg/lev/

Compute the Jackard Similarity between "researcher" and "saercher" using **letter Bi-grams** (2-grams). **Don't worry** about spaces before/after.

"researcher"={re,es,se,ea,ar,rc,ch,he,er}; "saercher"={sa,ae,er,rc,ch,he,er}: size of "researcher"=9, different in "saercher" =2. Total: 11; Common /total=4/11=0.36